Chagaging Mathematics, Volume II: Grade 8

%

E.E.

C.

O

Engaging Mathematics, Volume II: Grade 8

Teacher Edition

Product ID 407-1816 This page intentionally left blank.

Region 4 Education Service Center supports student achievement by providing educational products and services that focus on excellence in service for children.

Published by Region 4 Education Service Center 7145 West Tidwell Road Houston, Texas 77092-2096 www.esc4.net

© 2014 by Region 4 Education Service Center. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN-13: 978-1-937403-72-0

Printed in the United States of America

Acknowledgments

Region 4 Education Service Center would like to acknowledge the talent and expertise of those who contributed to the development of this book. Their dedication to our core values of excellence in service for children made possible the creation of this resource to assist educators in providing quality, effective instruction for all students.

Writing Team Shelley Bolen-Abbott Sana Brennan Yvette Henry Sherry Olivares Debbie Sheridan Sharon Benson, EdD *Design Team* Dave Martinez

Table of Contents

Introduction	i–ix
What is Engaging Mathematics, Volume II: Grade 8?	iv
What is found in an Engaging Mathematics TEKS-based activity?	
Texas Essential Knowledge and Skills (TEKS) Alignment Chart	vi–ix
Real Numbers	1-19
Real Number Relationships	
Irrational Numbers, Activity 1	
Irrational Numbers, Activity 2	6-7
Ordering Real Numbers, Activity 1	
Ordering Real Numbers, Activity 2	
Ordering Real Numbers, Activity 3	
Scientific Notation, Activity 1	
Scientific Notation, Activity 2	18–19
Pythagorean Theorem	20-33
Pythagorean Theorem Models, Activity 1	20–21
Pythagorean Theorem Models, Activity 2	
Pythagorean Theorem, Activity 1	
Pythagorean Theorem, Activity 2	
Distance on a Coordinate Plane, Activity 1	
Distance on a Coordinate Plane, Activity 2	
Equations and Inequalities	
Writing Equations from Situations, Activity 1	
Writing Equations from Situations, Activity 2	
Writing Situations from Equations, Activity 1	
Writing Situations from Equations, Activity 2 Writing Inequalities from Situations	
Writing Situations from Inequalities	
Writing Equations and Inequalities from Situations, Activity 1	
Writing Equations and Inequalities from Situations, Activity 2	
Writing Situations from Equations and Inequalities	
Modeling Equations, Activity 1	
Modeling Equations, Activity 2	
Solving Equations, Activity 1	
Solving Equations, Activity 2	
Slope and y-intercept	
Slope, Activity 1	
Slope, Activity 2	
Rate of Change or Slope and y-intercept, Activity 1	
Rate of Change or Slope and y-intercept, Activity 2	74–75
Rate of Change or Slope and y-intercept, Activity 3	76–77
Rate of Change or Slope and y-intercept, Activity 4	
Multiple Representations, Activity 1	80-82

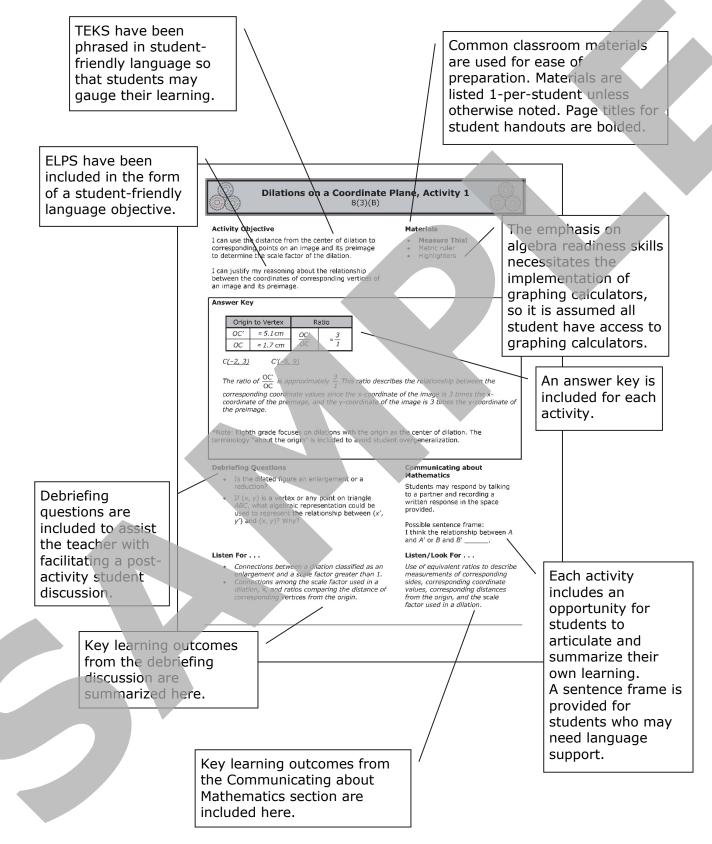
Parallel Lines and Transversals, Activity 3	
Exterior Angles of Triangles	
Angle-Angle Criterion	
Three-Dimensional Shapes	
Volume of Cylinders, Activity 1	
Volume of Cylinders, Activity 2	
Volume of Cylinders, Activity 3	
Cylinders and Cones	
Volume of Cones	
Volume of Spheres	
Volume of Cylinders, Cones, and Spheres	
Surface Area of Prisms, Activity 1	
Surface Area of Prisms, Activity 2	
Surface Area of Cylinders, Activity 1	
Surface Area of Cylinders, Activity 2	
Surface Area of Prisms and Cylinders	
Functions	
Functions, Activity 1	
Functions, Activity 2	
Functions, Activity 3	
Functions, Activity 4	
Data	
Bivariate Data, Activity 1	
Bivariate Data, Activity 2	
Trend Lines, Activity 1	
Trend Lines, Activity 2	
Mean Absolute Deviation, Activity 1	
Mean Absolute Deviation, Activity 2	
Mean Absolute Deviation, Activity 3	
Random Samples	
Personal Financial Literacy	
Interest Rates and Loans	
Loan Repayment	
Growing Money Over Time	
Simple vs. Compound Interest, Activity 1	
Simple vs. Compound Interest, Activity 2	
Payment Methods	
Analyzing Financial Situations	
Cost of College	

What is Engaging Mathematics, Volume II: Grade 8?

An instructional resource featuring over 100 Texas Essential Knowledge and Skills (TEKS)-based, classroom-ready mathematics activities that each take approximately 10 to 15 minutes to complete.

 A TEKS-based resource that addresses all Grade 8 mathematics TEKS and provides—
 Rigorous problem-solving tasks

- Manipulative-based tasks
- Vocabulary development tasks
- Sorting and classifying tasks



A resource that supports high-quality, research-based instruction by providing activities that can be used for various purposes, including—

- Engaging warm-ups and opening tasks that draw students into relevant and challenging mathematics
- Instructional support for all students, from at-risk to gifted and talented, to help learners articulate, refine, and retain important mathematical concepts, processes, and skills
- Short-cycle, formative assessments that provide immediate and ongoing feedback to guide instruction for the teacher and learning for the student
- Supplemental tasks to support intervention strategies
 - A resource that incorporates the mathematics process standards by promoting—
 - Reasoning, generalizing, and problem solving in mathematical and real-world contexts
 - Modeling, using tools, and connecting representations
 - Analysis
 - Communication

What is found in an Engaging Mathematics TEKS-based activity2

Texas Essential Knowledge and Skills (TEKS) Alignment Chart

Numbers and operations

Focus TEKS	Activity	Page	
8(2)(A)	Real Number Relationships	2	
8(2)(B)	Irrational Numbers, Activity 1	4	
8(2)(B)	Irrational Numbers, Activity 2	6	
8(2)(C)	Scientific Notation, Activity 1	16	
8(2)(C)	Scientific Notation, Activity 2	18	
8(2)(D)	Ordering Real Numbers, Activity 1	8	
8(2)(D)	Ordering Real Numbers, Activity 2	10	
8(2)(D)	Ordering Real Numbers, Activity 3	14	

Proportionality

Focus	Activity	Page
TEKS	Activity	rage
8(3)(A)	Attributes of a Dilation, Activity 1	142
8(3)(A)	Attributes of a Dilation, Activity 2	146
8(3)(A)	Attributes of a Dilation, Activity 3	148
8(3)(B)	Dilations on a Coordinate Plane, Activity 1	150
8(3)(C)	Dilations on a Coordinate Plane, Activity 2	152
8(3)(C)	Dilations on a Coordinate Plane, Activity 3	154
8(4)(A)	Slope, Activity 1	68
8(4)(A)	Slope, Activity 2	70
8(4)(B)	Unit Rate and Slope, Activity 1	108
8(4)(B)	Unit Rate and Slope, Activity 2	110
8(4)(B)	Unit Rate and Slope, Activity 3	112
8(4)(B)	Unit Rate and Slope, Activity 4	114
8(4)(C)	Rate of Change or Slope and γ -intercept, Activity 1	72
8(4)(C)	Rate of Change or Slope and γ -intercept, Activity 2	74
8(4)(C)	Rate of Change or Slope and y-intercept, Activity 3	76
8(4)(C)	Rate of Change or Slope and γ -intercept, Activity 4	78
8(5)(A)	Proportional Relationships, Activity 1	116
8(5)(A)	Proportional Relationships, Activity 2	118
8(5)(B)	Non-Proportional Relationships, Activity 1	100

Focus TEKS	Activity	Page	
8(5)(B)	Non-Proportional Relationships, Activity 2	102	
8(5)(B)	Non-Proportional Relationships, Activity 3	104	
8(5)(C)	Bivariate Data, Activity 1	2 30	
8(5)(D)	Trend Lines, Activity 1	236	
8(5)(D)	Trend Lines, Activity 2	238	
8(5)(E)	Direct Variation, Activity 1	120	
8(5)(E)	Direct Variation, Activity 2	122	
8(5)(F)	Proportional and Non-Proportional Relationships, Activity 1	124	
8(5)(G)	Functions, Activity 1	220	
8(5)(G)	Functions, Activity 2	222	
8(5)(G)	Functions, Activity 3	224	
8(5)(G)	Functions, Activity 4	228	
8(5)(H)	Proportional and Non-Proportional Relationships, Activity 2	128	
8(5)(H)	Proportional and Non-Proportional Relationships, Activity 3	132	
8(5)(H)	Proportional and Non-Proportional Relationships, Activity 4	134	
8(5)(H)	Proportional and Non-Proportional Relationships, Activity 5	136	
8(5)(I)	Multiple Representations, Activity 1	80	
8(5)(I)	Multiple Representations, Activity 2	84	
8(5)(I)	Multiple Representations, Activity 3	86	
8(5)(I)	Multiple Representations, Activity 4	88	
8(5)(I)	Multiple Representations, Activity 5	92	

Expressions, equations, and relationships

	Focus TEKS	Activity	Page
8(6)(A) Volume of Cylinders, Activity 1		Volume of Cylinders, Activity 1	194
	8(6)(A) Volume of Cylinders, Activity 2		196
	8(6)(B)	Cylinders and Cones	200
	8(6)(C)	Pythagorean Theorem Models, Activity 1	20
	8(6)(C)	Pythagorean Theorem Models, Activity 2 Volume of Cylinders, Activity 3	
	8(7)(A)		
	8(7) (A)	Volume of Cones	
8(7)(A) Volume of Spheres		Volume of Spheres	206

Focus TEKS	Activity	Page
8(7)(A)	Volume of Cylinders, Cones, and Spheres	208
8(7)(B)	Surface Area of Prisms, Activity 1	210
8(7)(B)	Surface Area of Prisms, Activity 2	212
8(7)(B)	Surface Area of Cylinders, Activity 1	214
8(7)(B)	Surface Area of Cylinders, Activity 2	216
8(7)(B)	Surface Area of Prisms and Cylinders	218
8(7)(C)	Pythagorean Theorem, Activity 1	24
8(7)(C)	Pythagorean Theorem, Activity 2	26
8(7)(D)	Distance on a Coordinate Plane, Activity 1	28
8(7)(D)	Distance on a Coordinate Plane, Activity 2	32
8(8)(A)	Writing Equations from Situations, Activity 1	34
8(8)(A)	Writing Equations from Situations, Activity 2	36
8(8)(A)	Writing Inequalities from Situations	44
8(8)(A)	Writing Equations and Inequalities from Situations, Activity 1	50
8(8)(A)	Writing Equations and Inequalities from Situations, Activity 2	54
8(8)(B)	Writing Situations from Equations, Activity 1	40
8(8)(B)	Writing Situations from Equations, Activity 2	42
8(8)(B)	Writing Situations from Inequalities	48
8(8)(B)	Writing Situations from Equations and Inequalities	56
8(8)(C)	Modeling Equations, Activity 1	58
8(8)(C)	Modeling Equations, Activity 2	60
8(8)(C)	Solving Equations, Activity 1	64
8(8)(C)	Solving Equations, Activity 2	66
8(8)(D)	Parallel Lines and Transversals, Activity 1	182
8(8)(D)	Parallel Lines and Transversals, Activity 2	184
8(8)(D)	Parallel Lines and Transversals, Activity 3	188
8(8)(D)	Exterior Angles of Triangles	190
8(8)(D)	Angle Angle Criterion	192
8(9)(A)	Intersecting Lines, Activity 1	94
8(9)(A)	Intersecting Lines, Activity 2	96
8(9)(A)	Intersecting Lines, Activity 3	98

Two-dimensional shapes

Focus TEKS	Activity	Page	
8(10)(A)	Properties of Orientation and Congruence, Activity 1	174	
8(10)(A)	Properties of Transformations	180	
8(10)(B)	Properties of Orientation and Congruence, Activity 2	176	
8(10)(C)	Counterclockwise Rotations	162	
8(10)(C)	Clockwise Rotations	164	
8(10)(C)	Representing Transformations Algebraically, Activity 1	166	
8(10)(C)	Representing Transformations Algebraically, Activity 2	170	
8(10)(D)	Measurements of Dilated Figures, Activity 1	156	
8(10)(D)	Measurements of Dilated Figures, Activity 2		
8(10)(D)	Measurements of Dilated Figures, Activity 3		

Measurement and data

Focus TEKS	Activity	Page
8(11)(A)	Bivariate Data, Activity 2	232
8(11)(B)	Mean Absolute Deviation, Activity 1	240
8(11)(B)	Mean Absolute Deviation, Activity 2	242
8(11)(B)	Mean Absolute Deviation, Activity 3	244
8(11)(C)	Random Samples	246

Personal financial literacy

Focus TEKS	Activity	Page
8(12)(A)	Interest Rates and Loans	248
8(12)(B)	Loan Repayment	250
8(12)(C)	Growing Money Over Time	252
8(12)(D)	Simple vs. Compound Interest, Activity 1	254
8(12)(D)	Simple vs. Compound Interest, Activity 2	
8(12)(E)	Payment Methods	258
8(12)(F)	Analyzing Financial Situations	260
8(12)(G)	Cost of College	262

Activity Objective

I can determine if a given statement about a shape and its dilation is true or false.

I can describe how I determined if a statement is always true.

Answer Key					
	Statement	True or False	Justification		
1.	The corresponding angles of a shape and its dilation will have the same measures.	True	<i>Possible answer: A shape and its dilation are similar figures and therefore corresponding angles are congruent.</i>		
2.	A shape and its dilation are similar figures.	True	<i>Possible answer: If a shape is dilated, the image and preimage are similar.</i>		
3.	The scale factor, k, of a dilation can be determined by writing a ratio comparing the length of a side of the image to the length of the corresponding side of the preimage.	True	Possible answer: The scale factor of a shape and its dilation is the ratio comparing the length of a side of the image to the corresponding side length of the preimage.		
4.	If one side length of a shape is 8.4 cm and the corresponding side length of its dilation is 23.1 cm, the scale factor is $\frac{4}{11}$.	False	Possible answer: The scale factor is the ratio comparing the side length of the image to the corresponding side length of the preimage: $\frac{23.1}{8.4}$ or $\frac{11}{4}$.		

Debriefing Questions

- How can you determine the scale factor, k, used to dilate a figure?
- How could you use a counterexample to justify that a statement is false?

Listen For . . .

Understanding of scale factor as the ratio of the side length of the image to the corresponding side length of the preimage.
Use of vocabulary such as angle measures, dilations, image, preimage, ratio of corresponding side lengths of the image to the preimage, scale factor, and similar figures.

Communicating about Mathematics

Students may respond by talking to a partner and recording a written response in the space provided.

Possible sentence frame: I used _____ to determine if a statement is always true.

Listen/Look For ...

Use of the critical attributes of similar figures to evaluate statements regarding dilations.

Materials

• Dilations: True or False

Dilations: True or False

Determine if each statement below is true or false. Write a sentence justifying your selection.

	Statement	True or False	Justification
1.	The corresponding angles of a shape and its dilation will have the same measures.		
2.	A shape and its dilation are similar figures.		
3.	The scale factor, <i>k</i> , of a dilation can be determined by writing a ratio comparing the length of a side of the image to the length of the corresponding side of the preimage.		
4.	If one side length of a shape is 8.4 cm and the corresponding side length of its dilation is 23.1 cm, the scale factor is $\frac{4}{11}$.		

Communicating about Mathematics

How did you determine if a statement is always true?

· · · · · · · · · · · · · · · · · · ·	

Volume of Cylinders, Activity 2

8(6)(A)

Activity Objective

I can interpret the volume formula for a cylinder.

Materials

• Volume: Who Is Correct?

I can describe the relationship between the length of a cylinder and V = Bh.

Answer Key

Orlando is incorrect.

Possible answer: Orlando correctly divided the diameter by two to determine the radius. However, he then calculated the circumference of the circle instead of the area. He then multiplied this by the length (height) of the tube.

Seth is correct.

Possible answer: Since the base of the packing tube is a circle, the area of the base should be calculated using $A = \pi r^2$. Seth correctly calculated the area of the circle. Then he multiplied his answer by the length (height) of the tube.

Debriefing Questions

- What does *B* represent in *V* = *Bh*?
- What parts of the formula were applied correctly? Incorrectly? Justify your answer.
- What advice would you give a student who was incorrect to consider on the next volume problem he or she has to work?

Listen For . . .

- Connections between given information and V = Bh.
- Connections between the diameter of a circle and $A = \pi r^2$.

Communicating about Mathematics

Students may respond by talking to a partner and recording a written response in the space provided.

Possible sentence frame: The length of the packing tube is the _____ in the formula.

Listen/Look For ...

Connections between the diameter and length of the packing tube and the base and height of a cylinder. Is

Volume: Who Is Correct?

Orlando and Seth were asked to set-up the following problem:

A packing tube has a diameter of 5.5 inches and a length of 19 inches. What is the volume of the packing tube?

Orlando and Seth each set the problem up differently. Their work is shown below.

Orlando's Work	Seth's Work
$V = Bh$ $V = 2\pi (2.75)(19)$	$V = Bh$ $V = \pi (2.75)^2 (19)$
s Orlando correct? Justify your answer.	Is Seth correct? Justify your answer.

Communicating about Mathematics

Draw a sketch of the packing tube described in the problem above. Label its dimensions, and shade its bases. What is the relationship between the length of the packing tube and the formula V = Bh?
